Regularized inversion method for retrieval of aerosol particle size distribution function in W(1,2) space.

نویسندگان

  • Yanfei Wang
  • Shufang Fan
  • Xue Feng
  • Guangjian Yan
  • Yanning Guan
چکیده

A determination of the aerosol particle size distribution function by using the particle spectrum extinction equation is an ill-posed integral equation of the first kind. To overcome this, we must incorporate regularization techniques. Most of the literature focuses on the Phillips-Twomey regularization or its variations. However, there are drawbacks for some applications in which the real aerosol distributions have large oscillations in a Junge-type distribution. The reason for this is that the scale matrix based on the norm of the second differences in the Phillips-Twomey regularization is too ill- conditioned to filter the large perturbations induced by the small algebraic spectrum of the kernel matrix and the additive noise. Therefore we reexamine the aerosol particle size distribution function retrieval problem and solve it in W1,2 space. This setting is based on Sobolev's embedding theorem in which the approximate solution best simulates the true particle size distribution functions. For choosing the regularization parameters, we also develop an a posteriori parameter choice method, which is based on the discrepancy principle. Our numerical results are based on the remote sensing data measured by the CE318 sunphotometer in Jia Xiang County, Shan Dong Province, China, and are performed to show the feasibility of the proposed algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new regularized inversion method for the retrieval of stratospheric aerosol size distributions applied to 16 years of SAGE II data (1984–2000): method, results and validation

We apply a regularization method for the optical inversion of SAGE II aerosol extinction profiles and derive the particle number density N , the mode radius ρ and width σ of an effective lognormal aerosol size distribution. The constraint applied to the inversion scheme allows us to appreciably enhance the stability of the solution. Therefore, because of the disposal of a more stable inversion ...

متن کامل

Improved identification of the solution space of aerosol microphysical properties derived from the inversion of profiles of lidar optical data, part 2: simulations with synthetic optical data.

We developed a mathematical scheme that allows us to improve retrieval products obtained from the inversion of multiwavelength Raman/HSRL lidar data, commonly dubbed "3 backscatter+2 extinction" (3β+2α) lidar. This scheme works independently of the automated inversion method that is currently being developed in the framework of the Aerosol-Cloud-Ecosystem (ACE) mission and which is successfully...

متن کامل

Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution.

We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to exte...

متن کامل

Linear estimation of particle bulk parameters from multi-wavelength lidar measurements

An algorithm for linear estimation of aerosol bulk properties such as particle volume, effective radius and complex refractive index from multiwavelength lidar measurements is presented. The approach uses the fact that the total aerosol concentration can well be approximated as a linear combination of aerosol characteristics measured by multiwavelength lidar. Therefore, the aerosol concentratio...

متن کامل

Investigation of Physical Effects on Nanoparticle Size in Aerosol Solvent Extraction System

Aerosol solvent extraction system (ASES) was used to prepare micro-particle of acetaminophen by supercritical carbon dioxide as an anti-solvent. Experiment was carried out at various temperatures, pressures, solvents and investigated the effects of these parameters on particle size, size distribution and morphology by SEM and laser diffraction particle size analyzer. It seems that the choice of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied optics

دوره 45 28  شماره 

صفحات  -

تاریخ انتشار 2006